Gene Editing

From May-June, 2018 Foreign Affairs
How CRISPR Could Transform Global Development, by Bill Gates

“Over the next decade, gene editing could help humanity overcome some of the biggest and most persistent challenges in global health and development. The technology is making it much easier for scientists to discover better diagnostics, treatments, and other tools to fight diseases that still kill and disable millions of people every year, primarily the poor. It is also accelerating research that could help end extreme poverty by enabling millions of farmers in the developing world to grow crops and raise livestock that are more productive, more nutritious, and hardier. New technologies are often met with skepticism. But if the world is to continue the remarkable progress of the past few decades, it is vital that scientists, subject to safety and ethics guidelines, be encouraged to continue taking advantage of such promising tools as CRISPR.”

Visiting the “Centre for Tropical Livestock Genetics and Health at the University of Edinburgh. I learned about advanced genomic research to help farmers in Africa breed more productive chickens and cows. As the scientists explained, the breeds of dairy cows that can survive in hot, tropical environments tend to produce far less milk than do Holsteins—which fare poorly in hot places but are extremely productive in more moderate climates, thanks in part to naturally occurring mutations that breeders have selected for generations. The scientists in Scotland are collaborating with counterparts in Ethiopia, Kenya, Nigeria, Tanzania, and the United States. They are studying ways to edit the genes of tropical breeds of cattle to give them the same favorable genetic traits that make Holsteins so productive, potentially boosting the tropical breeds’ milk and protein production by as much as 50 percent. Conversely, scientists are also considering editing the genes of Holsteins to produce a sub-breed with a short, sleek coat of hair, which would allow the cattle to tolerate heat.”

“Gene editing to make crops more abundant and resilient could be a lifesaver on a massive scale. The technology is already beginning to show results, attracting public and private investment, and for good reason. Scientists are developing crops with traits that enhance their growth, reduce the need for fertilizers and pesticides, boost their nutritional value, and make the plants hardier during droughts and hot spells. Already, many crops that have been improved by gene editing are being developed and tested in the field, including mushrooms with longer shelf lives, potatoes low in acrylamide (a potential carcinogen), and soybeans that produce healthier oil.”

“Scientists from the University of Oxford are developing improved varieties of rice, including one called C4 rice. Using gene editing and other tools, the Oxford scientists were able to rearrange the cellular structures in rice plant leaves, making C4 rice a remarkable 20 percent more efficient at photosynthesis, the process by which plants convert sunlight into food. The result is a crop that not only produces higher yields but also needs less water. “


“In global health, one of the most promising near-term uses of gene editing involves research on malaria. . . There are more than 3,500 known mosquito species worldwide, but just a handful of them are any good at transmitting malaria parasites between people. Only female mosquitoes can spread malaria, and so researchers have used CRISPR to successfully create gene drives—making inheritable edits to their genes—that cause females to become sterile or skew them toward producing mostly male offspring. Scientists are also exploring other ways to use CRISPR to inhibit mosquitoes’ ability to transmit malaria—for example, by introducing genes that could eliminate the parasites as they pass through a mosquito’s gut on their way to its salivary glands, the main path through which infections are transmitted to humans.”


Leave a Reply

Your email address will not be published. Required fields are marked *